Quiz # 10

EEL 3111C Spring 2012 Dr. Srivastava

SrivaStAva ____________________________ _______________________
Last Name First Name Section #

Find anyone of the following quantities in the circuit shown. You need not find each one.

(a) Thevenin's voltage phasor at A and B,

or (b) Norton's current phasor at A to B,

or (c) Thevenin's impedance at A and B.

\[V_{AB} \]

Let \(\tilde{V}_{tn} = \tilde{V}_{AB} \)

\[I_1 = 2 \angle 45^\circ \] \hspace{1cm} (1)

\[I_x = \tilde{I}_1 - \tilde{I}_2 \] \hspace{1cm} (2)

\[2\angle 0^\circ (\tilde{I}_2 - \tilde{I}_1) + 110\angle 0^\circ \tilde{I}_2 + 10\angle 0^\circ \tilde{I}_x = 0 \] \hspace{1cm} (3)

\[-10 \tilde{I}_x + (10 - 10) \tilde{I}_3 = 0 \]

Solution gives \(\tilde{I}_2 = 1 \angle 135^\circ, \tilde{I}_3 = \sqrt{2} \angle 45^\circ \).

\[\tilde{V}_{tn} = -110 \angle (\tilde{I}_3) = 10 \angle 45^\circ \ V \]

Let \(\tilde{I}_n = \text{Short-Circuit Current from A to B} \).

For Node 3: \(-10 \tilde{I}_x + 10 \tilde{I}_3 = 0 \)

\[\tilde{I}_3 = \tilde{I}_x = \tilde{I}_1 - \tilde{I}_2 \]

\[\tilde{I}_3 = \sqrt{2} \angle 45^\circ \]

\[\tilde{I}_n = \tilde{I}_3 = \sqrt{2} \angle 90^\circ \ A \]

\[\frac{\tilde{V}_{tn}}{\tilde{I}_n} = \frac{10 \angle 45^\circ}{\sqrt{2} \angle 90^\circ} = 5 \sqrt{2} \angle 45^\circ \ A \]

\[\frac{\tilde{V}_{tn}}{\tilde{I}_n} = (5 - \sqrt{2}) \Omega \]