5.2 Find i_o in the circuit in Fig. P5.2 if the op amp is ideal.

Figure P5.2

5.3 The op amp in the circuit in Fig. P5.3 is ideal.

a) Calculate v_o if $v_a = 4 \text{ V}$ and $v_b = 0 \text{ V}$.
b) Calculate v_o if $v_a = -2 \text{ V}$ and $v_b = -1 \text{ V}$.
c) Calculate v_o if $v_a = 2 \text{ V}$ and $v_b = 1 \text{ V}$.
d) Calculate v_o if $v_a = 1 \text{ V}$ and $v_b = -2 \text{ V}$.
e) Calculate v_o if $v_a = 1.5 \text{ V}$ and $v_b = 4 \text{ V}$.
f) If $v_b = 1.6 \text{ V}$, specify the range of v_a such that the amplifier does not saturate.

Figure P5.3

5.6 The op amp in the circuit in Fig. P5.6 is ideal. Calculate the following:

a) v_1
b) v_o
c) i_2
d) i_o

Figure P5.6

5.9 The op amp in the circuit in Fig. P5.9 is ideal.

a) Find the range of values for σ in which the op amp does not saturate.
b) Find i_o (in microamperes) when $\sigma = 0.272$.

Figure P5.9

5.12 The op amp in Fig. P5.12 is ideal.

a) What circuit configuration is shown in this figure?
b) Find v_o if $v_1 = 1 \text{ V}$, $v_2 = -1.5 \text{ V}$, and $v_2 = -4 \text{ V}$.
c) The voltages v_1 and v_2 remain at 1.5 V and -4 V, respectively. What are the limits on v_o if the op amp operates within its linear region?

Figure P5.12

5.17 The op amp in the circuit of Fig. P5.17 is ideal.

a) What op amp circuit configuration is this?
b) Find v_o in terms of v_i.
c) Find the range of values for v_i such that v_o does not saturate and the op amp remains in its linear region of operation.

Figure P5.17
5.20 The op amp in the circuit of Fig. P5.20 is ideal.
 a) What op amp circuit configuration is this?
 b) Find v_o in terms of v_x.
 c) Find the range of values for v_x such that v_o does not saturate and the op amp remains in its linear region of operation.

![Figure P5.20](image)

5.23 The op amp in the noninverting summing amplifier of Fig. P5.23 is ideal.
 a) Specify the values of R_i, R_b, and R_c so that
 $$v_o = 6v_a + 3v_b + 4v_c.$$
 b) Using the values found in part (a) for R_i, R_b, and R_c, find (in microamperes) i_a, i_b, i_c, i_s, and i_e when $v_a = 0.5 \, \text{V}$, $v_b = 2.5 \, \text{V}$, and $v_c = 1 \, \text{V}$.

![Figure P5.23](image)

5.31 The resistor R_t in the circuit in Fig. P5.31 is adjusted until the ideal op amp saturates. Specify R_t in kilohms.

![Figure P5.31](image)

5.41 The two op amps in the circuit in Fig. P5.41 are ideal. Calculate v_{o1} and v_{o2}.

![Figure P5.41](image)